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A comparison is made between several different methods for

calculating energy transport within a wave field. Two Langevin

techniques are developed. The first is based on the fluctuation-
dissipation theorem and provides relaxation rates v, and a
transport equation. The second method is an application of

the Krylov-Bogoliubov-Mitropolsky perturbation theory and pro-

vides a Langevin rate constant at lowest order. The two

:B
formulations are shown to be closely related to the radiative
transfer (Boltzmann) equation whose rate is the difference
between;Vf and Vpr Specific application of the Langevin
me%ﬂods is to internal waves in the ocean. Computations show

that the GM-T6 spectrum is approximately an equilibrium

spectrum except for frequencies near the inertial frequency and
at the lowest vertical modenumbers. The sensitivity of Vg
and,vp/to spectral form is also discussed. Simple analytic
expressions for the rates are derived for the induced diffusion,

o elastic scattering, and parametric subharmonic instability
mechanisms. Only the first of these mechanisms is ever of much
numerical significance. Finally, net energy flow in the non-
equilibrium portion of the GM-T6 spectrum is discussed.
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1. INTRODUCTICN

Nonlinear energy transfer mechanisms within the oceanic internal

wave field have been studied by Olbers [1976] and MeComas and Bretherton

[1977]. These authors used a radiative transfer equation [Hasselmann,

1966, 1967] for their computations. The radiative transfer (or Boltzmann)

equation governs the evolution of wave action spectra ensemble averaged

over many realizations of the wave field. Derivation of this equation

from the fluid equations requires several approximations:

(a)

Nonlinearities are assumed "weak," and only lowest order

(quadratic for the case of internal waves) nonlinear terms are retained

in the equations of motion.
(b) Two-time perturbation methods are used; the "fast time"
corresponds to linear wave periods and the "slow time" to nonlinear

interaction timescales.

(c) Spatial homogeneity in any horizontal plane is assumed. This

allows simplification of second moments of wave amplitudes.

(d) A closure approximation is made by the discard of fourth and
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higher order cumulants.

In the present study we compare several different techniques for

calculating energy transport within the internal wave field. The dynamical

il




equations [Meiss, Pomphrey, and Watson; 1979, henceforth referred to as I]
are derived using approximation (a) and describe nonlinear interaction
of the linear normal modes of the wave field. Here we use the Garrett-
Munk exponential profile for the Vaisdld frequency and the WKB approxi-
mation to calculate the vertical modefunctions (Olbers [1976] and
McComas and Bretherton [1977] have used a constant Viisdld profile).
Two Langevin equation techniques are developed in this paper to study the
dynamics of the system derived in I (Langevin methods have been used by
Holloway and Hendershott [1977] to discuss Rossby waves).

The first Langevin method is based on the fluctuation-dissipation
theorem [Lax, 1960, 1966]. This method provides relaxation rates and
1 transport equation, and depends rather little on dynamics. It assumes

linear relaxation to a known eqguilibrium state and also requires approxi-

' we choose

mations (b), (¢) and (d). For the "known equilbrium state,'
a set of Garrett-Munk related spectra, with the "GM-T6" spectrum
[Cairns and Williams, 19T6] as our reference standard.

To obtain the second form of the Langevin equation we use approxi-
mation (b) in the form of the Krylov-Bogoliubov-Mitropolsky perturbation
method. [Bogoliubov and Mitropolsky, 1961]. Approximation (d) is not
required to calculate the Langevin rate constant with this procedure.

We shall show in Section 3 that the two Langevin formulations are
closely related to the radiative transfer equation. For fluctuations near
a true equilibrium state the two formulations are in agreement. In this
case the transport equation obtained from the Langevin equation is

identical in form with that used by Olbers [1976] and by MeComas and

Bretherton [1977].




—
: T R ORI o

i o

The Langevin method leads to a decay rate v(k) for the autocorrelation
of the amplitude for a linear internal wave labelled as "k." When calcu-
lated using the fluctuation-dissipation theorem, we call this vF(k).

The value obtained from perturbation theory is written as vP(k). The
radiative transfer equation used by Olbers [1976] and by MeComas and

Bretherton [1977] for the action density <J, > is of the form

where

vB(k) = vF(k) - vP(k) .

It is convenient to think of vp as representing the rate of energy input
to mode k from the "noise field" of the wave system and to think of

vp as describing a rate of energy loss from mode k.

MeComas [1978] reported numerical experiments in which he intro-
duced small distortions in the GM~T6 spectrum and computed the relaxation
to "equilibrium." We givé an analytic description of this in Section 3
and show that the Langevin autocorrelation decay rate vP(k) also determines

the rate of return to equilibrium.

Numerical calculations of v_ and v, are presented in Section 5. We

F P
shall see that for the GM-76 spectrum, except for frequencies near the
inertial frequency and at the lowest vertical mode numbers, I”B' is

from one to three orders of magnitude smaller than Vg (or vP). We
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thus find precise numerical confirmation of the conclusion of

MeComas and Bretherton [197T] (who calculate only v,) that GM-T6

B
is approximately an equilibrium spectrum.

The sensitivity of vp and Vp to spectral form is also discussed
in Section 5 for a class of GM-T6 type spectra. Not surprisingly,
in the equilibrium region where 123 is a small difference between two

much larger quantities, the values of v, are rather sensitive to spectral

B
shape.
MeComas and Bretherton [1977] describe three limiting mechanisms

for energy transfer. They call these induced diffusion, elastic scattering

and parametric subharmonic instability. In Section 6 we present simple

analytic expressions for Vg and Vp for each of these mechanisms. We
show from these expressions that GM-T6 represents an equilibrium spectrum,
except at the lowest frequencies and lowest vertical mode numbers, with
respect to both induced diffusion and elastic scattering. (For the case
of induced diffusion this was noted by MeComas and Bretherton [1977] and
was implied more generally from their numerical calculations.)

We show that the elastic scattering and parametric subharmonic
instability mechanisms are never of much numerical significance for the
GM-T76 spectrum. For frequencies greater than three times the inertial
frequency the analytic expressions obtained from induced diffusion for
both Vp and Vp agree well with the numerically calculated values for
these quantities.

Net energy flow in the non-equilibrium portion of the GM-76 spectrum

is discussed in Section 7. Our conclusions are generally consistent with

those of Olbers (1976] and of MceComas and Bretherton [1977] that energy
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is transferred from the low vertical mode number regime into that of high
vertical mode numbers and near inertial frequencies. Since net energy
flow is determined by V> the details depend relatively sensitively on
the assumed spectrum.

The Langevin rate constants discussed here govern relaxation processes
in the wave field and also immediately yield values for the more frequently
calculated Boltzmann constant v,. The simple analytic approximations for

B

these rate constants given in this paper should be adequate for applications

to internal wave transport processes.




2. THE DYNAMICAL MODEL

A general description of internal wave phenomena and theory is
given by Phillips [1977]. The detailed description of the specific
dynamical model used here is given in I. A rectangular coordinate
system is chosen with the x-y plane tangent (locally) to the ocean
surface. The bottom is assumed horizontal at z = -E. The Garrett-Munk

exponential Vdis#lHd profile is used in this paper:

N(z) = N, exp(z/B) = (1)

Dimensional quantities are No = 5.2 (10)"3 rad/sec, B = 1.2 km and the
surface fluid density po = p(o). Thecoriolis frequency is assumed
vertical with magnitude

(2)

Bo=Te3 (lO)_S rad/sec = .01k N

corresponding to 30° latitude. Vectors, x = (x,y), are two-dimensional
in the horizontal plane.

The vertical displacement of a Lagrangian fluid element was written
in I as

£4(x,2,8) = Re [¥(x,2,t)],

3

|
uh‘ Y{x,z,t) = 1 N0 /B

ne~- 8

Equation (3) is a Fourier expansion in an ocean of rectangular area J
)

|




e

in terms of horizontal wavenumbers k. The linear vertical modefunctions,

~

W, a(Z)’ satisfy the eigenvalue equation

k
= : - ] - Ng—wi(k)
== | p— W +pk | —=—mm= | W =0,
dz d.z ka wi ( & ) _f2 k(!.
W (k)>09
o
wka(o) = ‘,-Tka(-H) = 0. (4)

Here wa(k) is the angular frequency of a linear internal wave with
integer vertical modenumber q.
The amplitudes aka are dimensionless wave slope variables and satisfy

[I, eq. 2.23]

é'1*: ol lzm [6k+2—mG§£azam4-Gk-l-mGtmalam] g (5)
s £ ity B
Here we have used abbreviated labels, writing k,2,m for (k,a), (2,8),
and (m,y) respectively. Explicit expressions for the "G" coupling
coefficients in (5) were given in I. They contain integrals over the
product of three modefunctions W (see appendix A) as well as factors
determined by the geometry of the interacting triad.

Wave action per unit area is expressed in terms of the slope

variables as [I, eq. 2.21]

w N Iaka

- 3 a0 ~
by o N B 55 ’ (6)
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The Boussinesq approximation has not been used to derive equations

(3), (4) and (5). This approximation entails the neglect of the term

aw.
%%' —Egg in (). In Appendix A it is shown to have a negligible

effect on the coupling coefficients in (5). We shall therefore make

* this simplifying approximation for our subsequent discussion.

é Following Garrett and Munk [1975, 1979] we use the WKB approximation
to solve (4). This appears reasonably valid for a=2 (results for o=l
are at best qualitative but will be included for completeness). We also
use their dispersion relation

kBN
o)

w (k) = £° + g s (1)

valid when wa(k)<<No (and assumed valid in this paper for wa(k)<No/3).

The power spectral density (PSD) of vertical displacement is written as

¥w(k,a,z) and normalized so that

(-

<g§>= T [a®k y(k,a,2) , (8)
a=1l ¥

where "< >" represents an ensemble average over realizations of the internal

% . wave field. We shall require only the spectrum y(k,a) extrapolated to

; I the surface for which <£§> = <;§> = (7.3m)2. From equations (1), (3),

|

} | (6), (7) and the normalization of the eigenfunctions Wka (Appendix A),

i we see that

1\

2
Zo <la§a| >
iR ) m =g s (9)
g Ln 2k
b
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In this paper we adopt a PSD related to the Garrett-Munk form [Garrett

and Munk, 1975, 19791, with

(kBT

Bc,a) = = N <(g 3)%>

21 pt p/2 + 1 ?

[(xB)2 + 1.9 (10)~34?] [ # {a/3)"]

(10)
where p is the "wavenumber slope" and t is the "modenumber slope." The

GM-T6 spectrum [Cairns and Williams, 1976] with p=2, t=2, and N,, = .013

t
f
§
k
|

I3
=
I3
¢
¢
g

is chosen as our "standard."
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3. RELAXATION RATES

In this section we discuss and relate three different methods for
calculating relaxation rates in a random wave field. We fix attention
on a single, definite internal wave mode, say that labelled (k,a). This
is the "test wave," and we study its interaction with the ambient wave-

"

field. Averages are denoted "< >" and are over an ensemble of states

of the ambient field. We suppose that the test wave always has a definite
amplitude at some initial time, say t=0. As t-w there will be no difference
between this ensemble and an ensemble of states of the entire internal

wave field (including the test wave).
A. Fluctuation Dissipation Theorem
We cast the equations of motion (5) for the test wave as a Langevin

equation by representing the nonlinear terms on the right hand side by

a random force R(t) (for convenience we temporarily drop the mode labels

(%,a)):
a + iwa = R(t) . (11)

From this point of view the test wave is driven by the ambient waves

which act as an "equilibrium heat bath." It is convenient ‘o transform

variables, defining

il i s e

e =

e AR T e
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b(t) = e alt) (12)
so that (11) becomes
b=e"% =n8) . (13)
Following the conventional argument [Lax, 1960, 1966] we suppose that
at t=0, b has the definite value b(0). The mean of b, averaged over the
ambient ensemble, obeys the equation
-c%t_ <b> = <R(t)>
It is anticipated that as t»w~, <b> + 0. This leads to a reasonable
postulate for the form of R:
R(t) = - vb(t) + F(t) ,
<F> =0 3 (14)

Here v is the Langevin relaxation rate (assumed real since any imaginary

part may be removed by a transformation of the form (12)).

From assumption (14), equation (13) becomes




from which it follows that

BlE)> = blo) F (16)

To develop the fluctuation dissipation theorem we assume

T be)B =0, (17)
a constant, equilibrium value. (Since the hamiltonian from which equation
(5) was derived has no lower bound in energy, a true equilibrium in the
thermodynamic sense does not exist. However, large amplitude fluctuations .
are sufficiently rare that we can ignore this problem. INote the arnalogy with
the theory of low-lying Stark states of hydrogen.) It is, of course,
of interest to determine if the Garrett-Munk PSD (10) corresponds to
this equilibrium, and this is one of the tasks for the computations in
Sec. 5.

Considerable simplification results by assuming §-correlation of the
noise

<F(£)F*(£')> = 2D §(t-t') . (18)

Numerical investigations described later indicate that decorrelation is

sufficiently rapid that equation (18) is a good approximation for our

application. It is easy to show that D is real.

s
i
i




Integration of (15) using assumptions (17) and (18) and restoring

mode labels yields the fluctuation-dissipation result

Vv

plksa) = 75 , (19a)

where the subscript "F" indicates that this relaxation rate is derived
by the fluctuation-dissipation method.
For future comparison with the radiative transfer equation we

generalize (19a) to define a rate coefficient

D(k,a)

vo(k,a) = e s (19b)
<'aka| >

where <|aka12> does not necessarily represent an "equilibrium" value.
To evaluate D we use the linear approximation for the ambient field

amplitudes on the right hand side of (5)

-1 t
le

azs(t) = alB(O) e

~

We also use the cumulant discard approximation to reduce fourth moments

to second moments. Evaluation is straightforward, giving

-

3 <F(t)F*(0)> at

=00

ke, 2
L

D(k,a)

L]

St G(ma+w8-wy)

L.m %
je e 2 2
+ 2|Glm| Gk_l_mé(wa-we-wY)} <lalBl > <|amYl > . (20)

~ o ~
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For a large ocean area 20 we may replace wavenumber sums by integrals

with the substitution

5 bt

~

and use equations (20) and (9) to re-write (19b):

. g 2 k2 2
vp(k,a) = 2m BZY fa®2d"m (]G~ 5(15+%-§1)5(ma+m3-wY)
22
k 2 2
+ 2lG2m| 6(%—%—?)6(wa-w8-my)} —;%—
¥(2,8)¥(m,y)
< ———— ' (21)
v(k,a)

It is clear that v is a positive quantity.

F

B. Perturbation Method

The Xrylov-Bogoliubov-Mitropolsky [1961] two-time perturbation method
. provides an alternative means of obtaining a Langevin equation of the

form (15) [see e.g. Case, 1966]. For the lowest order perturbation

calculation, the cumulant discard assumption is not required since the
test wave is a sure quantity at t=0 under the averages. Using an
adiabatic "switch on" in the remote past of the right hand side of (5),

we obtain a complex "frequency shift" |
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=16~

2szGm
v(k a) =< 1ilim z _m
i w tw,=w +in k+2-m

m0(+) 2,m a B Y A

*
Gtmsz 2G§ gt
i e ea s T e CUS R - <|a

T0 Fin CEgem = 0 i Mcegem (0)|%
(L)a (.I)B (-I)Y n wa B (DY n

28

(22)

The real part of this is the relaxation rate

vP(k,a) Re[v(k,a)]

2 2 kg . m
- 2r BZY [d%28"m [2Gm Gy a(§+%-T)6(wa+wB-wY)
9

*
o g 6 (k-2+m) 6 (0w

. Y9y e B+wY)

k mQ 2
+2 GlmGk 6(%—%-?)6(wa-ws-wY)] L W(%,B) . (23)

Here we have used the standard relation

Re [ 1lim ] = n8(x)

0(+) ¥
and also expression (9) for the PSD. In Appendix (B), equation (23) is re=-
written in a form which shows that the first and last terms are positive

while the second term is negative.




—
e

> I g A | Pl s —

1T

C. Radiative Transfer Equation

The radiative transfer or Boltzmann equation has been used by
Olbers [1976] and MeComas and Bretherton [1977] to describe nonlinear
internal wave interactions. In this method, the equations of motion
(5) are used to obtain an equation for d<[ak|2>/dt [see, for example,
Davidson, 1972] in terms of <akaza;>, etc. Equations for the rate of
change of these third order moments involve fourth moments. Closure
results from discard of fourth order cumulants, leaving second order
moments. Use of the homogeneity assumption allows expression of these
in terms of the PSD. Finally, first order perturbation theory is used
to integrate the equations for <aka a¥>, The result of all this is the

L m

transport equation

d 2 2
i <'ak(!l > = 2\)3(}5,(;) <’8k(1! > (2ka)

where

U = Yo - Y . (2L4p)

The expression (21) and (23) for GF and v, are to be used here. Symmetry
properties of the G-coefficients may be used to rewrite (24) in precisely
the form given by Olbers [1976] and MeComas and Bretherton [197T]
(Appendix B).

Equation (24) shows the relationship of the Boltzmann transport
equation to the two versions of the Langevin description. We shall see

in the next section that (24) may also be derived directly from the Langevin

equations.
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In the application of the fluctuation-dissipation theorem, we were

required to assume that the <Iaka|2> corresponded to the equilibrium

state o, . This was not, of course, used to obtain equations (23) and

(24), which result from dynamical equations. We see from (2k), however,

that if <|aka|2> = 0, ,» then vy(k,a) = 0 and

GF(E,G) = vF(§,a) = vP(E,a) 4 (25)

The two forms of the Langevin equation and the transport equation (24)
are then consistent. We have seen that the quantity GF is always positive.

Evidently, for an equilibrium spectrum v, must also be positive although

P

this is not guaranteed since the full expression (23) for vp is not

positive definite.

When the ambient field is at (or nearly at) equilibrium, so v_>0,

P

the fluctuation-dissipation "noise" D tends to excite the mode (k,a)

at a rate v, (or v,). Energy is lost to the ambient field at the rate

F F

2% To illustrate theimplications of this, suppose that our test wave
has arbitrary initial amplitude, but all other modes are in equilibrium.

We can then use (19b) to integrate (24):

-2v_t =2v_t
Ja ()% = <o _(0)[% e T + f% [l—e P ] . (26)

The equilibrium value is evidently

2 =
> =

<|ay |
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as required by the fluctuation-dissipation theorem and (25). Now,
from (16), we obtain
=vopt-iw X t

<a (t) af (0)> = <[a_(0)]|% e : (27)

So from (26), the time scale for <laka|2> to reach equilibrium is
determined by Vps while the autocorr;lation function (27) decay rate
is determined by Vp-

The dynamical calculations reported in I, corresponding to numerical
integration of equations (5) seem to be reasonably consistent with (26):
A test wave of initially small amplitude was found to grow to the GM-T76
value in roughly the expected time. It remained at this level as long as
the calculation was continued.

In the above discussion we assume that there exists an equilibrium
solution to (24). For this to have physical interest the solution should

correspond, to some extent, to observed internal wave spectra. In

Section 5 we shall present computed values of GF and Vp for a class of

GM spectra and conclude as did MeComas and Bretherton [197T7] that
GM-T6 is nearly an equilibrium spectrum, except for frequencies close
to the inertial frequency and for the lowest mode numbers. Within

the "equilibrium range'" we will see that v, may be several orders of

B

magnitude smaller than GF’ and therefore tends to be quite sensitive

to details of the spectrum.

T ———
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L. FOKKER-PLANCK EQUATION

The assumption that the "ncise" term in (15) represents a
Markoff process, fluctuating rapidly on the time scale v;l, permits one
to derive a Fokker-Planck equation for the probability distribution of
the amplitude b [Chandrasekhar, 1943; Wang and Uhlenbeck, 1945]. To

obtain this, we first write b in terms of its real and imaginary parts,
o o A U ‘

The probability density for x and y at time t is written as P(x,y,t).

The Fokker-Planck equation is obtained from (15):

B o B g
% = 3z wpxPl+ o= [vyPl
2 2
gl B o Al ey (28)
2 2 2
90X oy

Here D is the quantity defined by (20). An equation of evolution for

the wave amplitude intensity
<|a|2> = f(x2 + ye) P dxdy
may be obtained immediately from (28):

é% <|aka|2> = 2vF(§,a) L <|aka|2>] ‘ (29)

~




|
|
|
|
|
|
|
|
|

This is precisely equivalent to (24) if there exists an equilibrium

spectrum o, since then Vp = Vp- In Appendix B (29) is rewritten to

include the effects of inhomogeneous media.
We have now introduced three different rate constants, Vo Vg and

v It is to be observed from equations (24), (26), (27) and (29) that

B
Vg describes the net rate of transfer of action (or energy), whereas

v, (or vF) represents a relaxation rate.

B
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5. COMPUTATIONS AND RESULTS

In this section we evaluate (21) and (23) for v and vp for given

F
test wave parameters (wavenumber, frequency and modenumber). The co-
efficients G depend on integrals over WKB modefunctions wka' In Appendix A

we show that to a good approximation the modenumber dependence of these

integrals can be replaced by a delta function condition (corresponding

to approximate vertical wavenumber conservation). This greatly simplifies
the evaluation of the decay rates since use of the delta functions reduce
their calculation to a single sum over modenumber (selects individual
frequency resonance curves) and a single integral along each curve.

The wavenumber conservation relations restrict the allowed region

of triad interaction to an open rectangle in m-% space such as shown in

Figure 1. The frequency resonance conditions further restrict allowed
interactions to simple curves within the rectangle. If we neglect the
Coriolis frequency f in the dispersion relation (7), the resonance curves
are straight lines whose slope and intercept depend on modenumber ratios.
With f#0 the curves are bent to an extent which depends on the proximity
to the m and 2 axes and on the value of k. Two examples of resonance
curves are illustrated in Figure 1.

The parameter range for the calculations is determired by the region
of validity of the WKB model. We allow freguencies in the range f<w<No/3
where the upper limit may be varied to test for sensitivity of results.
If any member of a wave triad has a frequency greater than the cut-off

value, that triad does not contribute to v. Similarly, we employ a long

wavelength cut-off at 100 km so that the "plane ocean" assumption remains
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valid. For satisfactory convergence (~ 5%) of the values for v it was

—

sufficient to retain only modenumbers in a band of halfwidth 25 centered

SR A

about the test wave modenumber. That is, triads lying on rescnance

curves for which Ia-BI, |a-y|$ 25 were included in the calculations.

ik

Changing the value of the frequency cut-off by 25% typically pro-

duced less than a 5% change in v for frequencies w, < 15f. For higher
frequencies, important local frequency and wavenumber interactions

(induced diffusion, Section 6) are blocked by the cut-off, and the rates

4

are diminished. Quantitative results are found up to =17f or even higher

for large modenumbers. Changing the low-wavenumber cut-off can alsc have

a significant effect (~ factor of 2), especially for low modenumbers.

e e g e

This 1s again due to the induced diffusion mechanism where one triad
member has a small wavenumber. The analysis in Section 6 provides a
semi-quantitative estimate for the importance of this cut-off.

Figure 2 presents a plot of the decay rate v_ against test wave

P
frequency for the GM-T6 PSD (10). Each solid curve is labelled by the

test wave modenumber a. The heavy dashed line represents equality between

decay rate and linear frequency, and therefore distinguishes regions of

weak and strong nonlinearity (below and above the line, respectively). |
Since the theory assumes a weakly nonlinear wavefield, little quantitative

reliability can be placed on results above the dashed line. The high

frequency "kink" in the curves is a result of the frequency cut-off at

! 21f.
Q The results show some common trends and features. For given test

wave frequency, waves with large modenumber (wavenumber) decay most

rapidly: For given modenumber, the higher frequency (wavenumber) waves
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decay fastest, and there is a low frequency threshold (wa=3f) below which
the decay rate decreases very rapidly with decreasing frequency. These
features are also exhibited in Figure 3 which presents the same results
as Figure 2 except Vp is plotted as a function of wavenumber. At high

frequencies, a common (modenumber independent) k-dependence for the decay

rate is apparent.

It was noted in Section 3 that the expression (23) for Vp is not

positive definite: Interactions for which w, = t(m8~wY) ("difference

reactions™”) have the possibility of giving rise to initial growth of the

test wave amplitude. It is clear that if wa<2f’ difference reactions are
the only type of interactions possible; therefore Vo is most likely to

be negative at these low frequencies. Indeed our results show growth

(negative vP) for small frequencies, especially at high modenumbers.

This is indicated in Figure 4 which is a contour plot of the rate calcu-

lations. Here the shaded region corresponds to growth, the remainder

decay.
The calculation of the fluctuation-dissipation decay rate GF is
essentially the same as for Vps and the same cut-off parameters were

used. MNumerical estimates of the correlation time tc for the "noise"

term F in equation (15) show that te ™ m;l so that the delta correlation
assumption (18) is valid in the same region as the weak nonlinearity
assumption, GF<wa.

In Section 3 we saw that if y is an equilibrium PSD for the mode

(x,a) then vF(k,a) = vp(k,a). Similarly, if the wave field is nearly

]
"
-*r in equilibrium, taen v, = GF = vp is "small." An appropriate measure of

|£4 -
3
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relative equilibrium is not vB itself but rather the ratio

R(lfaa) = T"’ (30)

which compares the timescale for evolution of the spectrum to that for
relaxation of a single mode.

The ratio R is plotted against Wy for selected o in Figure 5 using
the GM-76 PSD. Apart from a sharp increase in R at low freguencies and
at high modenumbers (associated with vP<0), the small size of R over
such a wide range of W, and o is supportive evidence that GM-T76 is a
"good" representation of an equilibrium spectrum. Below we will compare
GM-T6 with other spectral forms to test the sensitivity of this result.

Olbers [1976] and MeComas and Bretherton [19TT] have calculated
energy transfer rates for various GM models. They have also determined
the direction of the energy flow by mapping regions of positive and nega-
tive Vg« We investigate the effect of the variation of two parameters
in the PSD. Using GM-T6 as the basic form for y [see equation (10)],

we change the wavenumber slope "p" and the modenumber slope "t."

A. Wavenumber Slope Change

With the modenumber slope given by the reference GM-76 value
; (t=2) we compute the ratio R for six values of the wavenumber slope.
{ The results are presented as contours in (wa’a) space in Figure 6.
Regions for which R>.lare designated "non-equilibrium" and shaded to

indicate the sign of v Energy flows from regions of negative (decay)

3
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to positive (growth) Vg When R<.1, contours of R are plotted and

the sign of v, is ignored. The area of this region and of the region

B
R<.0l1 indicates how much of the spectrum is equilibrium.

The GM~T76 PSD (p=2) is in equilibrium except for low modenumbers
(a<7) where the action decays and for low frequencies and high modenumbers
(w<2.5f, a>7) where the action grows. Decreasing p extends the vB>O
region to lower modenumbers and higher frequencies; increasing p has
the oppcsite effect. Overall, GM-76 is closest to equilibrium in the

high wavenumber region, although the results for smaller slopes are not

very different.

B. Modenumber Slope Change

Here the procedure is the same as above except that the wavenumber
slope is fixed at the GM-T6 value (p=2), and the modenumber parameter
t is varied. Figure 7 shows the results in the same format as Figure 6.
Unlike the previous case, as t decreases the growth region is confined
to higher modenumbers while the decay region expands. The GM-T76 spectrum
is again more closely in equilibrium for high wavenumbers than the other
spectra, although for 2<t<3 there is little change in the equilibrium
region.

Generally, the equilibrium region o>5 and wa>3f’ is insensitive
to the slope parameters p and t. However, these parameters strongly
affect the division between regions of growth and decay of the action.
For GM-T6 our computations are in agreement with McComas and Bretherton

indicating that action flows from a <5 into 0210 and w g 3f.
a




6. SPECIAL TRANSFER MECHANISMS

MeComas and Bretherton [197T7] have emphasized that certain classes
of triads have significant roles in determining transfer rates. In
this section we shall discuss quantitatively the importance of these
mechanisms for both the Langevin and Bocltzmann rate constants.

We begin with a discussion of the mechanisms called induced diffusion

and elastic scattering by McComas and Bretherton. We discuss these

together as limiting case I (LCI). As previously, we let (k,a) be the

test wave; then LCI corresponds to the triad conditions
wY(m) = wa(k)>>w8(2),
m = k>>Q. (31)

In this limiting case the G coefficients have simple forms, and we

may re-write (21), (23), and (24b) as

2
[02(k)-£2] W20-2 A
bl o S et Wy ol
w2(2)
2 2
i 2<£k A% WeE8) —%— vlfa,%SaIfY E SR RS Ay £ wg(£)].

The index "x" is used to represent "P", "F", or "B" where

e ————— _‘”.-.-;.J
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Nom (k)
A, = 9—Y—§ v(k,v),
w;(k)—f =

"
o
|
s
—
W
w
~—
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From (6) and (9) it is seen that Ap is proportional to wave action.

The quantity v is the overlap integral of vertical modefuncticns

kik
evaluated in Appendix A.
Equations (32) and (33) show that for LCI triads, the equilibrium p

condition v, = O corresponds to

B

By * My (3b)

or that A be independent of modenumber (equipartition of action).

(For the case of induced diffusion this was noted by McComas and Bretherton
[1977]). The results (32) and (34) do not require either the WKB or
Boussinesg approximations. The WKB dispersion relation (7) yields for

(3%)

v(k,a) ~ el

except near the inertial frequency which is precisely the form of GM=T6

(10) in this domain and for a>>3. The numerical calculations




in the previous section show equilibrium in this same region. We shall

show in the following that this is because LCI triads dominate the wave

interactions.

The integral v appearing in (32) is evaluated in the WKB

kek

approximation in Appendix A. From this we see that

2 [

Viegx | (25)

6u-B~Y * °a+8-y G aa-6+y

(For our actual calculations we use the more accurate form given in

the Appendix.) The terms g = *(a-y) when y=o>>B correspond to induced

diffusion (ID). The term 8 = a+y corresponds to elastic scattering

(ES).
Analytic evaluation of (32) for these two cases gives the expressions

Induced diffusion:

y el 3e-n),

Vp
— = 6.4 x 10~ >
No TTwa 6 Qe
[l- N ] g=(8 +9)No
o
(a=k)fw
o in s : (36)
ot )
a
Elastic scattering:
e
Vv (kB)"Nw
L£=21.0x107 -8
N Tw 3
0 1.2
=
o
(8-3)° /
x 3 (37)
3/2 Tw oie i
Y= 52(8%49) (w2-12) [1_ -—1J
Y 2NO
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The sum "+,-" above represents the sum over the two cases

W, = wa(k)if " (38)

For the analytic evaluation of (36) and (37) the upper limit of the

integral over & in (32) has been taken to be infinity since this has
little effect on the result. The numerical calculations reported in
Section 5 use a lower limit 1 . = 2n/(100km). This results in the

multiplication of expressions (36) and (37) by a factor

g ji-tan-l
™

2 N %
(2 i O/vi)]

In Figure 8 we compare the ID expression (36) (dashed curve)
with the calculated numerical results (solid curve) for Vp (for this
comparison the 2-integral cut-off was included). It is evident that

except for f<w<3f, the ID mechanism provides a very good approximation

for v

(36).

P’ and that vp may be easily calculated from the analytic expression ;

In Figure 9 we compare the ES (36) and ID (39) expressions for

Vp- It is seen that ES is much less important than ID.

The parametric subharmonic instability (PSI) mechanism of MeComas

and Bretherton [1977] corresponds to a large scale double frequency wave




interacting with two smaller scale waves with nearly equal frequencies.

In our notation, this corresponds to
<<k ,n >
B<<a,y

°8
g Tl Vi (39)
Since the ID mechanism successfully accounts for the interactions with
wa2'3f’ we expect that, at most, PSI could be important in the region

wa,s 2f. For this case we find

and an analytic evaluation is again possible. In contrast to the ID
and ES derivations a finite upper limit must be imposed on the f-wavenumber
integration for convergence of the approximate expressions. With the

choice 2 = k/5 the PSI limit for v, was one to two orders of magnitude

B
less than the full computation for the range f<wa<2f. Simulation of the
PSI conditions (39) in the full numerical code has shown that, although
the frequency and modenumber limiting conditions were both well satisfied

by the important triads, the wavenumber condition was not. We ccnclude

that for f<wa<2f the important triads have comparable wavenumbers.
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Choosing lmax = k, a rather crude approximation for Vp in the

range fSwas2f can be derived which gives the correct order of magnitude:

4 - » 1572
N—P-=-N—F=-3.S (10)'7 [h-f—z] [Q-tan'lQ]
o o W
a
kBN
O e B (b1)
n(hwe—fz)
a

Values calculated from (41) are shown in Figure 9.

The conclusions of this section are that for wa>3f and o 25, the
ID mechanism, expressed by (36) provides a good description of relaxation
within the internal wave field. The ES and PSI mechanisms are never of
much importance.

Equation (32), its analytic solution, and the good agreement with
the full numerical calculation provide the explanation for the conclusion
that the GM-T6 spectrum is in equilibrium in the domain wa>3f and

a>5. Outside this domain the spectrum does not seem to be in equilibrium.

-




T. ENERGY FLOW

Three-wave interactions are only one of the many prccesses which

contribute to the overall energy balance in the ocean. To understand
the measured internal wave energy spectrum requires a quantitative measure
of flow rates between the various sources and sinks. Here we obtain an
estimate of the energy flow rate through the non-equilibrium region of
GM-76 which also indicates the energy requirements to maintain the
spectrum.

The mean energy per unit area E(k,a) for the test wave is [I, eq. 2.19]

E(If,cx) =0 (k) <3, > . (L42)

~

The flow rate is obtained by taking the time derivative of (L42) using

equations (24), (6) and (9):

>
2 2w
dF(k ,a) kst " >
p—21 505 LA = pe LIS 1 N\
at e "5 3 vp¥ES) P ESR . (43)
(o] (HG—I

Since the radiative transfer equation conserves total energy, the
net energy flow from the region vB<0 is equal to the flow into vB>0. We
compute the flow from the negative region by integrating (43) over this [

domain of k,a space:

(=) 3E dE(k,a)
dE - N S \
= =1 dc;: i at L)
a o E
v.<0
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(

a-)/dt are given in table 1 for

The calculated partial rates dE
modenumbers between o=1 and a=6. For the first 5 modenumbers they are
comparable, while for a=6 the rate has decreased by nearly a factor of
2, and the contributions from a>6 (not shown) are much smaller. Except
for a=1, the main contribution to the k sum in (L44) peaks near w, = 2.2f,
independent of a. Although the peak is not sharp it does suggest that the
flow through the spectrum to smaller frequencies is weak: The major flow
is from low to high modenumbers. The net energy flow rate from the region

of negative v_ sums to dE(-)/dt = 6.4 (10)_h W/mz. for a<6, and we believe

B
that this represents only a slight underestimate of the total rate.
Olbers [1976] has evaluated the transfer rate to high modenumbers
for the GM-T75 spectrum and found it to be 3 (10)'3 Wm-e, significantly
larger than our GM-T6 rate. McComas and Bretherton [1977], however,
have noted a sensitivity of results to spectral shape as is reflected

in our Figures 6 and 7. Thus the validity of computed transfer rates

certainly depends on the precision to which the spectrum is known.

m— e
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APPENDIX A

OVERLAP INTEGRALS FOR EXPONENTIAL PROFILE

The explicit form of the coupling coefficients G in the equations
of motion (5) is given in the appendix of I. The only V&is&lid profile

dependent terms in these coefficients are the "overlap integrals':

o
= _:_L_ r (] (] 1
Vkam o J" pwkawlswmydz &
o -H
k 3
= — 1
Hom oy £H pwkawlemde ? (A1)

where the modefunctions W(z) are solutions of (L) with the normalization

O
L (WP W Wz = 6 : (A2)

R ant ka kB aB
The Boussinesq approximation entails setting p = s = p(2z=0) in these
integrals as well as in (4). Since typically p varies by only ~.3% over
the depth of the ocean, this approximation has little effect on the values

of the overlap integrals (Al).

In this approximation the eigenvalue problem (L) becomes

2
n -
wka + Qka(z) wka =0 5
5 5 Nz(z)-ws
Qka L wg-f2 5 (A3)
a




If we restrict ourselves to the region w<<No the utm integral

can be neglected. Qualitatively this can be seen by considering the

constant profile model

for which

{

+ +
a=-B-y GS—Y-G 6Y—a-B}

{—Sa—B-Y+GB-Y-a+6Y—u-B}

From the form of the coupling coefficients [I, equation (A.2)],

seen that the ratio of the p to the v containing terms is given
(k/Q)2 ~ (m/No)2 << 1.

This result is confirmed quantitatively by numerical evaluation

overlap integrals for the exponential profile.

To compute Veom? it is sufficient to use the WKB solutions

correct to first order in n = m/NO:




=40~

/38 [1- ég'na(k)] -z/2B
o) =T 4, 5 e sin(¢(z) + =/47
Q Q2
where
3 1/2
qua(o) )
&y = AT 5 A, = m(a=y),
Sa 2
TR I S R S
Qka B - el N ’
— > na [o)
¢ DRl i)
T N
o(z) = & = (46)
1- 5y

The WKB overlap integral is formed by differentiating Wk while keeping
QU
-z/2B

e fixed, and substituting into (Al). The result is
3l k 2 m

v = —_— d._d A A

kam NS@—B- Geeden%my Tum * T * Tiy! (AT)
where

k = a=B=y s v

T = =) —= [c,(q) sing - S,(q) cosq] (A8)

¢m 2q3 2 2

Here S, and 02 are Fresnel Integrals [Abramowitz and Stegun, 1964], and

q is the dimensionless vertical wavenumber mismatch at the surface

(A9)

q = B[q,(0) - q,,(0) - q (0)]

= B e =

{
!'.
)
H
|
{8
i
;
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To first order in n this can be written as

i 1
= -l - + — - -
q = m|a-B-y S il (naAa nBA8 nYAY)| . (A10)
The function Iim is peaked about zero vertical wavenumber mismatch.
This gives an approximate vertical wavenumber conservation law analogous
to that in (A5) for the constant N model. Comparing (A7) with (AS)

further shows that dka plays the role of effective vertical wavenumber.

A simple functional fit to Iim is given by

rp(a) =& 2 coslbg) (10 (a11)
where a = .0L53 and b = .37Lk3. It involves an error of less than 4%
for 0=<q <.

To facilitate the evaluation of the Langevin decay rates we approxi-
mate the function Iﬁm with a delta function, thereby enabling one of the
modenumber summations in (22) and (25) to be replaced by a trivial integral.

Using expression (All) it can be readily verified that the replacement

s -

k x~

I
I = 6(q) (A12)
s 1

is wvalid.

Numerical computation of the overlap integrals using the exact

S

Bessel function solutions [Garrett and Munk, 1972] show that the accuracy

of (A7) decreases with increasing frequencies reaching 40% at w/NO-.25

k
Lm

]
.
i
|

(providing the modenumbers are greater than one). For q = O the yu

VI M 1
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are typically less than 20% of the Bavklm; however, as q increases

v decreases rapidly (see All) while p is relatively constant.




APPENDIX B

ALTERNATIVE EXPRESSIONS FOR RELAXATION RATES

Equations (21) and (23) can be re-written in a form which makes
transparent their relationship both to one another and to the familiar
radiative transport equation of Olbers [1976], MeComas and Bretherton
[1977], and Davidson [1972].

To do this we use the hamiltonian coupling coefficients T, (k;%,m)

1

defined in I [Appendix A] and also the wave action variables (6). 1In

terms of these the relaxation rates are

. 2
Tpo” Vplksa) = bm R e ] pem® (wgmwgme. )
- g,y 2,m = e
2 T
+r (msk,2) % 8, 8w twgmw )} <Jp > < > (B1)
I >vka) =hr § 07 {2 r (e 8, 8w o)
ko PL7 2 TSR k=g-m " "a B

2
Tt ITI(T;%,§)| Sgagp

~ ~ ~ ~ o~ o~

_mﬁ(wa+w8—wY)

- )
x (<J£8> T V<0 : S (B2)

~ ~ ~

...-L-.‘-_..

Substitution of these expressions into v

B

(2Lkv) yields the usual expression.




T

The transport equation (29) can also be written in terms of action

variables

e
at <Jka> g 2vF(§,a) [Jka G <Jka>] (33)

~

~ ~

where J* is the equilibrium action. Equation (B3) can be generalized
[Olbers, 1976] to include the effects of a mesoscale current U(x) by

Ao 2 ) d
writing Jku(f)’ and interpreting = as

GO O AN o s e

Ty TR
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Table 1

Energy flow rates (Wm-z) from low modenumbers.

(<)
dE
a - % X th
A 1.1
2 1.3
3 1.3
L 1.1
5 1.0
6 0.6
ag'~) dEi-) o o 3
— = ] 5 = - 6.4 (10) Wm :
a 2
}4
4
4 8
:
'
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Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7
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FIGURE CAPTIONS

Resonance curves for dispersion relation (7). Dashed

curves are for f = O.

Decay rate versus test wave frequency. Curves are labelled
by modenumber. Dashed curve represents Vp = Wyr GM-T76

is used.

Decay rate versus wavenumber for GM-T6.

Contours of vP/No for GM-T6. The shaded region indicates

negative v_ corresponding to test wave growth.

2

Comparison of v, with QF. The quantity R [equation (30)]

B
is plotted against test wave frequency for selected mode-

number. GM-T6.

Comparative equilibria for different wavenumber slopes p
of PSD (10). GM-T6 uses p = 2. Non-equilibrium regions
(R>0.1) are shaded and the sign of vy is given. Otherwise

contours of R are drawn: Dashed contours denote R = 10-2,

dots denote B = 10°°.

Comparative equilibria for different modenumber slopes t

of PSD (10). GM-T76 uses t = 2.
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Figure 8

Figure 9

Y T o L S S

Comparison between the dominant induced diffusion transfer
mechanism [equation (36)] and the full numerical calculation

of vP/No. Curves are labelled by modenumber.

Comparison of contributions to |vP|/NO from special transfer

mechanisms. Analytic expressions for induced diffusion

[equation (36) ], elastic scattering [equation
@) === ] and modified parametric subharmonic
instability [equation (41) — « — « — -+ ] are evaluated.

Curves are labelled by modenumbers.
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